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Abstract

Sea Surface Temperature is the key variable when tackling seasonal to decadal climate
forecast. Dynamical models are unable to properly reproduce tropical climate variability,
introducing biases that prevent a skillful predictability. Statistical methodologies emerge
as an alternative to improve the predictability and reduce these biases. Recent studies5

have put forward the non-stationary behavior of the teleconnections between tropical
oceans, showing how the same tropical mode has different impacts depending on the
considered sequence of decades. To improve the predictability, the Sea Surface Tem-
perature based Statistical Seasonal foreCAST model (S4CAST) introduces the novelty
of considering the non-stationary links between the predictor and predictand fields.10

This paper describes the development of S4CAST model whose operation is focused
on the study of the predictability of any variable related to sea surface temperature.
An application focused on West African rainfall predictability has been implemented as
a benchmark example.

1 Introduction15

Global oceans have the capacity of storage heat and release it as energy that is trans-
ferred to the atmosphere altering global atmospheric circulation. Therefore, fluctuations
in monthly sea surface temperature (SST) may be considered as an important source
of seasonal predictability, improving the ability to forecast climate variables. Many re-
search works have been conducted to study the impacts of worldwide sea surface tem-20

perature anomalies (SSTA) by means of dynamical models, observational studies and
statistical methods. In this way, tropical oceans purchase greater relevance (Rasmus-
son and Carpenter, 1982; Harrison and Larkin, 1998; Klein et al., 1999; Saravanan and
Chang, 2000; Trenberth et al., 2002; Chang et al., 2006; Ding et al., 2012; Wang et al.,
2012; Ham, 2013a, b; Keenlyside et al., 2013). Because of the persistence shown by25

SSTA, alterations that occur in the oceans are slower than changes occurring in the
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atmosphere. Once the thermal equilibrium between the ocean and the atmosphere is
broken, oceans are able to release its energy, changing the atmospheric circulation for
some time before dissipating, leading in turn to an influence on other variables, being
the SSTA a potential predictor of their anomalous behavior.

The links between SST variability and rainfall have been documented by works deal-5

ing with the influence of tropical SST on seasonal precipitation regimes that mainly
occur in India and West Africa (Ward, 1998; Rasmusson and Carpenter, 1983; Ashok
et al., 2001; Kucharski et al., 2008; Rodríguez-Fonseca et al., 2011; Mohino et al.,
2011). Particularly, for the West African Monsoon (WAM), the SSTA becomes the main
source of predictability (Folland, 1986; Palmer, 1986; Fontaine et al., 1998; Rodríguez-10

Fonseca et al., 2015). On the one hand, SSTA is presented as the main driver of
the decadal variability (Janicot et al., 2001; Biasutti et al., 2008; Martin and Thorn-
croft, 2013). On the other hand, several observational studies suggest the influence
of global SSTA on the WAM at interannual time scales, pointing to changes asso-
ciated with El Niño-southern Oscillation (ENSO) (Janicot et al., 2001; Rowell, 2001;15

Joly and Voldoire, 2009), the Atlantic Niño (Giannini et al., 2003; Polo et al., 2008;
Joly and Voldoire, 2009; Nnamchi and Li, 2011), the Mediterranean (Rowell, 2003;
Gaetani et al., 2010; Fontaine et al., 2011) and the Indian Ocean (Chung and Ra-
mathan, 2006; Lu, 2009) all identified by their impact on the monsoon system and its
predictability. Beyond Indian monsoon and WAM, there are studies on the influence of20

the SSTA on rainfall throughout the Americas (Shin and Sardeshmukh, 2010; Giannini
et al., 2001; Haylock et al., 2006), Europe (Bulic and Kucharski, 2012; López-Parages
and Rodríguez-Fonseca, 2012) or even Australia (Drosdowsky and Chambers, 2001)
among others.

The study of the impacts of tropical global SST on climate has become increasingly25

important during the last decades. Thus, there are dynamical and statistical prediction
models that attempt to define and predict seasonal averages from interannual to mul-
tidecadal time scales. In this way, General Circulation Models (GCMs) emerged from
the need to reproduce the ocean–atmosphere interactions, responsible for much of cli-
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mate variability whose major component is attributed to ENSO phenomenon (Bjerknes,
1969; Gill, 1980). Numerous research centers worked extensively to create their own
models from coupled ocean–atmosphere GCMs used in conjunction with statistical
methods to achieve reliable ENSO variability predictions and analyze the skill of these
models (Cane et al., 1986; Barnett and Preisendorfer, 1987; Zebiak and Cane, 1987;5

Barnston and Ropelewski, 1992; Barnett et al., 1993; Barnston et al., 1994, 1999; Ji
et al., 1994a, b; Van den Dool, 1994; Mason et al., 1999). Predictability of rainfall has
become a scope for these models, finding works that have focused on this issue by
means of dynamical and statistical models (Garric et al., 2002; Coelho et al., 2006).
However, the difficulty of GCMs to adequately reproduce the tropical climate variabil-10

ity remains a real problem, so that in recent years the number of studies focusing on
specific aspects of the biases of these models has increased exponentially (Biasutti
et al., 2006; Richter and Xie, 2008; Wahl et al., 2011; Doi et al., 2012; Li and Xie, 2012,
2014; Richter et al., 2012; Bellenguer et al., 2013; Brown et al., 2013; Toniazzo and
Woolnough, 2013; Vanniere et al., 2013; Xue et al., 2013).15

Statistical models have been widely used as an alternative way of climate forecast-
ing, including several techniques in their development. Model Output Statistics (MOS)
determine a statistical relationship between the predictand and the variables obtained
from dynamic models (Glahn and Lowry, 1972; Klein and Glahn, 1974; Vislocky and
Fritsch, 1995). Stochastic climate models were defined in the 1970s to be first ap-20

plied to predict SSTA and thermocline variability (Hasselmann, 1976; Frankignoul and
Hasselmann, 1977) and later addressing non-linearity problems (Majda et al., 1999).
Moreover, Linear Inverse Modeling (Penland and Sardeshmukh, 1995) has been used
in predicting variables such as tropical Atlantic SSTA (Penland and Matrosova, 1998)
and the study of Atlantic Meridional Mode (Vimont, 2012). Statistical modeling with25

neural networks is also applied in climate prediction (Gardner and Dorling, 1998; Hsieh
and Tang, 1998; Tang et al., 2000; Hsieh, 2001; Knutti et al., 2003; Baboo and Shereef,
2010; Shukla et al., 2011) with the potential to be a nonlinear method capable of ad-
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dressing the problems in atmospheric processes that are overlooked in other statistical
methodologies (Tang et al., 2000; Hsieh, 2001).

A special mention goes to two linear statistical methods: Maximum Covariance Anal-
ysis (MCA) and Canonical Correlation Analysis (CCA). These methods have been
widely used in seasonal climate forecasting, either to complement dynamical models or5

to be applied independently. In this way, Climate Predictability Tool (CPT) developed at
International Research Institute for Climate and Society (IRI) allows user to apply mul-
tivariate linear regression techniques (e.g., CCA) to get their own predictions (Korecha
and Barnston, 2007; Recalde-Coronel et al., 2014; Barnston and Tippet, 2014). In
essence, these techniques serve to isolate co-variability coupled patterns between the10

time series of two variables (Bretherton et al., 1992). Based on the ability of the SSTA
as predictor field, these methods were originally applied to analyze the predictability of
variables such as ENSO (Barnston and Ropelewski, 1992), 500 mb height anomalies
(Wallace et al., 1992) or global surface temperature and rainfall (Barnston and Smith,
1996). Nevertheless, there are works discussing the use of these methods, focusing on15

the differences between the two techniques (Cherry, 1996, 1997) and on the limitations
in their applications (Newman and Sardeshmukh, 1995).

The co-variability patterns between SSTA themselves might fluctuate from one given
study period to another, determining non-stationary behavior over time. In this way, tele-
connections associated with El Niño or with the Tropical Atlantic are effective in some20

periods but not in others. In this way, Rodríguez-Fonseca et al. (2009) suggested how
the interanual variability in the Atlantic could be used as predictor of Pacific ENSO
after the 1970s, a theory that has been subsequently reinforced by further analysis
(Martín-Rey et al., 2012, 2014; Polo et al., 2014). The non-stationarity in terms of pre-
dictability of rainfall has also been found for West African rainfall (Janicot et al., 1996;25

Fontaine et al., 1998; Mohino et al., 2011; Losada et al., 2012; Rodriguez-Fonseca
et al., 2011, 2015); and Europe (López-Parages and Rodriguez-Fonseca, 2012; López-
Parages et al., 2014). Thus, the existence of non-stationarities in the development of
the statistical model is a key factor that has been taken into account.
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The present paper describes a statistical model based on the predictive nature of
SSTA treating the stationarity in the relationships between the predictor and predictand
fields. Section 2 describes the theoretical framework including the statistical methodol-
ogy and the significance of the statistical analysis. Section 3 is dedicated to S4CAST
model description including the determination of stationary periods, hindcast and fore-5

cast calculations and validation. Section 4 describes a case study concerning the Sa-
helian rainfall predictability.

2 Theoretical framework

2.1 Statistical methodology

Maximum Covariance Analysis (MCA) is a broadly used statistical discriminant anal-10

ysis methodology based on calculating principal directions of maximum covariance
between two variables. This statistical analysis considers two fields, Y (predictor) and
Z (predictand) (Bretherton et al., 1992; Cherry, 1997; Widmann, 2005) for applying the
Singular Value Decomposition (SVD) to the cross-covariance matrix (C) in order to be
maximized. SVD is an algebraical technique that diagonalizes non-squared matrices,15

as it can be the case of the matrices of the two fields to be maximized.
In the meteorological context, C is dimensioned in time (nt) and space domains (nY

and nZ for Y and Z respectively), although the spatial domain can be more complex
depending on the user requirements. SVD calculates linear combinations of the time
series of Y and Z, named as expansion coefficients (hereinafter U and V for Y and20

Z respectively) that maximize C. The expansion coefficients are computed by diag-
onalization of C. As C is non-squared, diagonalization is first done to A = CC

T and
then to B = C

T
C. The singular vectors R and Q are the resultant eigenvectors from

each diagonalization, which are the spatial configurations of the co-variability modes.
The associated loadings on time domain are the expansion coefficients U and V . The25

eigenvalues are a measure of the variance percentage explained by each mode.
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Mathematically, the time anomalies of both, Z and Y fields are calculated by removing
the climatological seasonal cycle to the seasonal means.

Z′ = Z−Z (1)

Y′ = Y−Y (2)

Then, the cross-covariance matrix is calculated as:5

CY ′Z ′ =
Y′Z′T

(nt −1)
(3)

MCA diagonalizes Eq. (3) by SVD methodology, obtaining the singular vectors R and Q

from which the expansion coefficients are obtained according to the following expres-
sion:

U = R
TY (4)10

V =Q
TZ (5)

Using the eigenvectors, the percentage of explained covariance is calculated as

scfk =
λ2
k

r∑
i
λ2
i

;λk = [λ1,λ2, . . .,λn] (6)

Where k is the eigenvalue for each k mode and r represents the number of modes
taken into account for the analysis.15

The expression from which an estimation of the predictand is obtained is a linear
model as:

Ẑ =ΦY (7)
3977
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Where Φ is the so-called regression coefficient and Ẑ denotes an estimation of the
data to be predicted (hindcast).

Taking into account that S is the regression map of the field Z onto the direction of U

S = UZT (8)

And assuming good prediction Ẑ, it follows that5

S = UẐT (9)

Introducing the equality
(
UU

T
)(

UU
T
)−1

= I and multiplying in Eq. (9) the following

expression is obtained:(
UU

T
)(

UU
T
)−1

S = UẐT (10)

Removing U from both terms10

Ẑ =
[
U
T
(
UU

T
)−1

S
]T

(11)

Considering now the expression U = YTR it follows that

Ẑ = YR
(
UU

T
)−1

S (12)

Comparing this expression with Eq. (7) and introducing Eq. (8) it can be concluded that

Φ = R
(
UU

T
)−1

UZT (13)15

Which is the regression coefficient to be calculated when defining the linear model from
which the predictions and hindcasts will be obtained.
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2.2 Statistical field significance

There are many statistical tests to assess the robustness of a result. The S4CAST
uses a non-parametric test because, a priori, the model does not know the distribution
of the predictand field. Thus, applying Monte Carlo testing assesses the robustness
of the results and is used to validate the S4CAST model skill. This method involves5

performing a large number (N > 500) of permutations from the original time series.
Each permuted time series is used to perform the calculations again and compare the
obtained results with the real values. Once this is done, the values obtained with the N
permutations are taken to create a random distribution to finally determine the position
of the real value within the distribution, which will indicate the statistical significance10

of the obtained value. This method has been described and used in several works
(Livezey and Chen, 1987; Barnett, 1995; Maia et al., 2007). The user inputs the level
of statistical significance at which the test is applied, being the most used 90 % (0.10),
95 % (0.05) and 99 % (0.01).

3 S4CAST model15

The first version of the model (S4CAST v1.0) was developed as the main part of a co-
operation project between the Laboratoire de Physique de l’Atmosphère et de l’Océan
Siméon Fongang of the University Cheik Anta Diop (UCAD) in Dakar (Senegal) and
the Complutense University of Madrid (UCM) and was limited to the study of the pre-
dictability of rainfall in West Africa from the SSTA in the tropical ocean basins. The20

second version (S4CAST v2.0), described in this paper, has been expanded allowing
the study of the predictability of any variable keeping a link with SSTA in any region
worldwide. The code has been developed as a MATLABr toolbox. The software re-
quirements are variable and depend on user needs. The spatial resolution and size
of data files used as inputs are directly proportional to memory requirements. The25

software generates an “out of memory” message whenever it requests a segment of
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memory from the operating system that is larger than what is currently available. The
model software consists of three main modules (Fig. 1), each composed of a set of
sub-modules whose operation is described below.

3.1 Model inputs

S4CAST v2.0 has a direct execution mode. By simply typing “S4cast” in the command5

window, the user is prompted to enter a series of input parameters in a simple and
intuitive way.

3.1.1 Loading databases

The model is ready to work with Network Common Data Form (NetCDF) data files.
There are different conventions to set the attributes of the variables contained in10

NetCDF files. In this way, the data structure must conform as far as possible to the
Cooperative Ocean/Atmosphere Research Service (COARDS) convention. Execution
errors that may occur due to the selection of data files are easily corrected by minor
modifications of data assimilation scripts. Data files can be easily introduced at the
request of the user. Once downloaded from the website of a particular institution, the15

user inserts data files into the directory set by default (S4CAST_v2.0/data_files).

3.1.2 Input parameters

In the first step, predictand and predictor data files are selected. In this way, the pre-
dictand field can be precipitation, SST, or any variable susceptible to be predicted from
SSTA. The predictor is restricted to SST.20

Once predictor and predictand fields are selected, the available common time period
between them is analyzed and displayed so that the user is prompted to select the
whole common period for analysis or other within it. The same temporal dimension in
both fields is required in the statistical analysis to construct the cross-covariance matrix
(see Sect. 2.1).25
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The next step is for selecting the n month forecast period in which the predictand is
considered. The model allows a selection from one (n = 1) to four (n = 4) months. From
the forecast period, the user determines a specific lead-time, relative to the predictor,
from which medium-range (lead-time 0) or long-range (lead-time > 0) forecast can be
performed. The temporal overlapping between the forecast period and the predictor5

is also available by defining the monthly lags between both fields from monthly lag
0 (synchronous) referred to the case in which the predictor and the predictand fields
are taken at the same n month period, through partial overlap to eliminate the overlap
(medium-range forecast). The forecast period must be determined by a previous study
of the predictand over the prediction region (e.g., July-August-September when study-10

ing Sahelian rainfall variability). Monthly lags indicating forecast times (lead-times) are
user selectable. To illustrate the above, if forecast period corresponds to rainy season
in West Africa (July-August-September; JAS), the synchronous option will consider the
predictor in JAS, while partially overlapping occurs when the predictor is taken for June-
to-August (JJA) and May-to-July (MJJ). A forecast time equal to zero (lead-time equal15

to zero) is referred to the period from April–June (AMJ). The lead-times (lags) depend
on the forecast period so that the model requires the input of this parameter for es-
tablishing the data concerning the predictor. Considering the above options, the user
can select a sequence of successive monthly lags or only one. Following the previous
example, considering JAS as the forecast period, lead time 0 will be AMJ, lead time 120

will be MAM, lead time 2 will be FMA and so on, without overlapping JAS season of the
previous year. Thus, the user can select any 3 month isolated period from JAS (syn-
chronous) to OND. Next, the spatial domains of both predictor and predictand fields
are selected from its latitudinal and longitudinal values.

Later, there is the possibility of applying a filter to the time series of predictor and pre-25

dictand fields. The current version uses a Butterworth filter, either as high-pass or low-
pass filter, which are frequently used in climate-related studies (e.g., Roe and Steig,
2004; Enfield and Cid-Serrano, 2006; Mokhov and Smirnov, 2006; Ault and George,
2012; Schurer and Hegerl, 2013). This filter allows the user to isolate the frequencies
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at which the variability operates, which can have different sources of predictability. In
this way, the user selects the cutoff frequency, following the expression 2dt/T , being
dt the sampling interval and T the period to be filtered both in the same units of time. If
no filter is applied, the raw data is used. There are plenty of filters that could be applied
and future versions of the model will include different possibilities.5

The statistical methodology is applied first considering the longer forecast time de-
fined by the selected lead-time and successively adding information for all other lead-
times up to the present. So, continuing with the example above, if selected lead-times
from 0 to 3, the first predictor matrix is made considering the 3 months lead-time pe-
riod (JFM). After, the 2 months lead-time period is added (JFM+FMA). Next, up to the10

period 1 month delayed (JFM+FMA+MAM), and finally the case up to the period with
a lead-time equal to zero (JFM+FMA+MAM+AMJ). Previous example is illustrated
in Fig. 2.

Once the matrices are determined, the statistical methodology is selected. Up to
now, the model applies the MCA discriminant analysis technique, although other sta-15

tistical methodologies will be included in future releases, including CCA or non-linear
methods as neural network and Bayesian methodologies. As indicated in the previ-
ous section, MCA determines a new vector base in which the relations between the
variables are maximized. Thus, it is important to choose a number of modes (princi-
pal directions) to be considered in the computations, selecting either a single mode or20

a set of them, always consecutive. The analysis of stationarity is performed for a single
mode selection. For multi-mode selection, the whole time series will be considered.

The statistical field significance level is set for the first time to assess the analysis of
stationarity. Thus, the model runs for the entire period and for those periods for which
the relationships are considered stationary within it. This is internally established by25

applying the method explained later in the Sect. 3.2.1.
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3.1.3 Data preprocessing

From selected data files and input parameters previously defined, preprocessing of
data is performed so that the data are prepared for implementing statistical methodol-
ogy.

3.2 Statistical tools5

At this point the statistical procedure described in the methodology is applied consid-
ering different periods based on the analysis of stationarity described below.

3.2.1 Analysis of stationarity

To evaluate how much the time series of the expansion coefficients of the predictor (Y)
and the predictand (Z) fields are related to each other, the model calculates the correla-10

tion coefficients between the expansion coefficients indicated in Eqs. (4) and (5) for the
selected kth mode along the record. In this way, stationary relationships between the
predictor (Y) and the predictand (Z) fields are established by applying a 21 years mov-
ing correlation windows analysis between the leading expansion coefficients of both
fields obtained from the discriminant analysis method using the whole record in accor-15

dance with the evolution of the correlation coefficient. To do this, three types of 21 years
moving correlation windows are selectable: “delayed” to correlate one year and the 20
previous years; “centered” to correlate one year, the 10 previous years and the 10 next
years; or “advanced” to correlate one year and the 20 next years.

From previous analysis, three different periods are analyzed depending on the sta-20

tionarity of the predictability: use the significant correlation period (hereafter SC) for
which the expansion coefficients are significantly correlated; use no significant cor-
relation period (hereafter NSC), and work with the entire period (hereafter EP). The
model performs all calculations for each period separately and, from them, the sim-
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ulated maps (hindcasts) of the predictand for each year are calculated by applying
cross-validation.

3.2.2 Model validation

Cross-validation is used in climate forecasting as part of statistical models when as-
sessing forecast skill (Michaelsen, 1987; Barnston and Van den Dool, 1993; Elsner5

and Schmertmann, 1994). This method is intended as a model validation technique in
which the data for the predictor and the predictand for a given time step is removed
from the analysis to make an estimate of it with the rest of data, comparing the simu-
lated value with the removed one. In this way, a cross-validated hindcast is obtained.
In the S4CAST model, the one-leave-out method is applied as described by (Dayan10

et al., 2013). From the comparison between the predicted value and the original one,
the skill of the model can be inferred using different skill-scores. S4CAST considers
the Pearson correlation coefficients and the root mean square error (RMSE) although
other scores will be introduced in future versions.

3.3 Model outputs15

Modes of co-variability are related to spatial patterns of different variables that co-vary
over time, and thus, are linked to each other. In the case of MCA, the covariance ma-
trix is computed and the SVD method is applied to provide a new basis of eigenvectors
for the predictor and predictand fields which covariance is maximized. The obtained
singular vectors describe spatial patterns of anomalies in each of the variables that20

tend to be related to each other. Regression and correlation maps and corresponding
expansion coefficients determine each mode of co-variability for the predictor and pre-
dictand fields. The expansion coefficients indicate the weight of these patterns in each
of the time steps. Thus, regression and correlation co-variability maps can be repre-
sented. This is done with the original anomalous matrix, highlighting those grid points25

whose time series are highly correlated with the obtained expansion coefficients, show-
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ing large co-variability and determining the key regions of prediction. To represent it,
regression and correlation maps are calculated to analyze the coupling between vari-
ables and to understand the physical mechanisms involved in the link.

On the other hand, the time series of the expansion coefficients determine the
scores of the regression and correlation maps at each time along the study period.5

The model represent the expansion coefficients used to calculate the regression coef-
ficients. Thus, those years in which the expansion coefficients for the predictor and the
predictand are highly correlated will coincide with years in which we can expect a better
estimation.

In the current version of the model, the root mean square error (RMSE) and the10

Pearson correlation coefficients skill scores have been included. These techniques are
applied to compare the observed and simulated maps (hindcasts) of the predictand
field obtaining correlation and RMSE maps and time series. On the one hand, maps
are obtained calculating for each grid point the skill scores between the hindcast and
the observed maps. On the other hand, time series are obtained for each time by ap-15

plying correlation and RMSE between the area average of the observed and estimated
maps. Some comments on these techniques are addressed by Barnston (1992). The
S4CAST model generates the hindcast within the EP, SC and NSC periods separately
from applying the one-leave-out method (Dayan et al., 2013) and then the statistical
methodology.20

4 Case study: Sahelian rainfall

The WAM is characterized by a strongly seasonal rainfall regime that mainly occurs
from July to September related to the semi-annual shift of the Intertropical Conver-
gence Zone (ITCZ) together with the presence of a strong thermal gradient between
the Sahara and the ocean in the Gulf of Guinea. The interannual fluctuations in sea-25

sonal rainfall are due to various causes, being the changes in global SST the main
driver of WAM variability (Rodríguez-Fonseca et al., 2015).
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S4CAST model is conceived as a statistical tool to forecast variables that strongly
covariate with SSTA variability in remote and nearby locations to a particular region
of study. Up to now, the model has been applied to study the predictability of rainfall
considering the non-stationary influence of the different oceanic predictors along the
historical record. In this section the model has been validated through the study of the5

seasonal rainfall predictability in the Western Sahel from SSTA in the tropical Atlantic
sector. This choice is motivated by two main reasons: on the one hand, SST in the
tropical Atlantic is well known to strongly influence the dynamics of the ITCZ (Fontaine
et al., 1998) which in turn determines the subsequent WAM. Nevertheless, dynamical
models do not reproduce the influence of SST on the ITCZ (Lin, 2007; Richter and10

Xie, 2008; Doi et al., 2012; Tonniazzo and Woolnough, 2013) becoming the statistical
prediction an alternative way to predict WAM variability. The second reason is related
to the non-stationary influence of the tropical Atlantic on Sahelian rainfall reported in
some studies (Janicot et al., 1996, 1998; Ward, 1998; Rodríguez-Fonseca et al., 2011;
Mohino et al., 2011; Losada et al., 2012).15

Two simulations were launched, both with the same inputs except for the predic-
tors, which are selected in different seasons (explained before). The predictand field
corresponds to precipitation from GPCC Full Data Reanalysis monthly means of pre-
cipitation appended with GPCC monitoring dataset from 2011 onwards with a resolu-
tion of 1.0◦ ×1.0◦ covering the period from January 1901 to November 2014 (Rudolf20

et al., 2010; Becker et al., 2013; Schneider et al., 2014; http://gpcc.dwd.de). The
predictor field corresponds to NOAA Extended Reconstructed SST (ERSST) V3b
monthly means of SST with a resolution of 2.0◦ ×2.0◦ spanning the period from Jan-
uary 1854 to January 2015 (Smith and Reynolds, 2003, 2004; Smith et al., 2008;
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html). The forecast period25

consists of July to September (JAS) season, computing seasonal anomalous rainfall
in the Sahelian domain (18.5–10.5◦W; 12.5–17.5◦N) as predictand field with no fre-
quency filter applied. The predictor spatial domain corresponds to southern subtropical
and equatorial Atlantic band (60◦W–20◦ E; 20◦ S–4◦N).

3986

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/3971/2015/gmdd-8-3971-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/3971/2015/gmdd-8-3971-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://gpcc.dwd.de
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html


GMDD
8, 3971–4018, 2015

S4CAST seasonal
forecast model

R. Suárez-Moreno and
B. Rodríguez-Fonseca

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

A high pass filter with cutoff frequency set to 7 years has been applied to the predic-
tor time series in order to analyze the influence of SSTA interannual variability, which
includes leading oceanic interannual variability modes such as the Atlantic equatorial
mode (AEM) (Polo et al., 2008) or the South Atlantic Ocean dipole (SAOD) (Nnamchi
et al., 2011) and removes decadal and multidecadal variability.5

For seasons where the predictor is taken, on the one hand, multiple selection has
been selected, which refers to the synchronous season (July to September; JAS) in
addition to monthly overlaps (June to August JJA and May to July MJJ) regarding the
predictand field. In this case the predictor is formed by a set of matrices as shown in
Fig. 2. This selection is hereinafter referred as synchronous. On the other hand, lead-10

time zero was selected (April to June; AMJ), allowing a real prediction. Table 1 lists
the case studies depending on the stationary periods and the selection of the predictor
seasons. The results are shown for the synchronous selection (MJJ+ JJA+ JAS) cor-
responding to SL1. When SL0 is considered, the season with a lead-time set to zero
(AMJ) is taken for predictor, so that the temporal overlap between the predictor and the15

predictand is avoided.
The analysis method corresponds to MCA, for which the leading mode of co-

variability (k = 1) was selected. Periods with stationary predictability (SC and NSC)
are established by the method explained in Sect. 3.2.1 between the predictor and pre-
dictand expansion coefficients for the entire period (EP). Two correlation curves are20

shown for SL0 and SL1 selections (Fig. 3). These curves reflect the stationary periods
(SC and NSC) within EP period from 1902 to 2013 depending on the predictor selec-
tions (see Table 1). The curve corresponding to SL0 shows the SC period related to
years from 1933 to 1971, while SL1 exhibit a SC period related to years from 1932 to
1984. The remaining years for each selection are taken to analyze the predictability for25

the NSC periods. When the statistical analysis is applied over the entire period we refer
to non-stationary influence (EP-SL0 and EP-SL1), assuming changes in predictability.
Stationary cases are related to the analysis applied to SC (SC-SL0 and SC-SL1) and
NSC (NSC-SL0 and NSC-SL1) periods, for which the model produces a series of es-
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timations (hindcasts) separately. The statistical significance in all the calculations has
been set to 90 %.

Figures 4–6 show regression maps associated with the leading mode of co-variability
for each period (SC, NSC, EP) and predictor (SL0, SL1). For SC-SL0 case study, the
leading mode explains 53 % of co-variability while the percentage increases to 58 %5

for SC-SL1. A quasi isolated signal over tropical Atlantic (Fig. 4) is observed, being
stronger the magnitude of SSTA and appearing a signal of opposite sign in the coast of
Senegal when tackling SC-SL0 case. This co-variability pattern, for its positive phase,
exhibits a cooling over tropical Atlantic associated with a rainfall dipole over West Africa
with negative anomalies in the region of the Gulf of Guinea and opposite in the Sahel.10

The opposite co-variability pattern takes place under negative scores of the expan-
sion coefficient. These results are in agreement with those found in the last decades
of the 20th century by several authors who have discussed the role of the tropical At-
lantic SST as a dominant factor in the WAM variability at interannual and seasonal
time scales (Janowiak, 1988; Janicot, 1992; Fontaine and Janicot, 1996). Also, Losada15

et al. (2010b) found how the response to an isolated positive equatorial Atlantic Niño
event is a dipolar rainfall pattern in which the decrease of rainfall in Sahel is related to
the increase of rainfall in Guinea (as in Fig. 4). Mohino et al. (2011) and Rodríguez-
Fonseca et al. (2011) have found in the observations how this dipolar behavior takes
place for some particular decades coinciding with the SC periods, confirming in this20

way the correct determination of the leading co-variability mode by the model.
When considering the EP period (Fig. 5) the leading mode explains 44 and 41 %

of co-variability between SSTA and rainfall for EP-SL0 and EP-SL1 respectively. As in
the case of considering the SC period (Fig. 4), a cooling over tropical south Atlantic
is associated with a rainfall dipole over West Africa with positive anomalies over the25

Sahel and negative in the Gulf of Guinea. Nevertheless the anomalous rainfall signal
is less intense in both cases (EP-SL0 and EP-SL1) when compared to SC. Opposite
sign anomalies are observed over the tropical North Pacific and around the coast of
California about 20◦N, specially when EP-SL0 is considered for predictor.
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Regarding the NSC period (Fig. 6), the leading mode explains 30 % of co-variability
for NSC-SL0 case and 22 % for NSC-SL1. Both cases relate a cooling in the tropical At-
lantic with negative rainfall anomalies in the Gulf of Guinea (vice versa for a warming),
and no opposite signal over the Sahel. This result agrees with former studies in which
the disappearance of the rainfall dipole associated to interannual equatorial Atlantic5

variability was attributed to the remote influence of other basins (Rodríguez-Fonseca
et al., 2011; Losada et al., 2012). The global SSTA regression map shows a significant
cooling in the tropical Pacific, suggesting its influence when NSC periods are consid-
ered. A similar tropical SSTA pattern in which opposite temperature anomalies appears
in the equatorial Atlantic and Pacific in summer has been documented to occur in the10

decades within the NSC period (Rodríguez-Fonseca et al., 2009; Martin-Rey et al.,
2012, 2014), confirming the correct determination of the leading co-variability mode by
the model.

The results presented above support the existence of a non-stationary behavior of
the teleconnections between SSTA variability and rainfall associated with WAM which15

has been referenced in the previously mentioned works. Several authors have ad-
dressed the dipolar anomalous rainfall pattern as a response of an isolated tropical
Atlantic warming (cooling) (Rodríguez-Fonseca et al., 2011; Losada et al., 2010a, b;
Mohino et al., 2011) always restricted to the period 1957–1978 in the observations.
The uniform rainfall signal over the whole West Africa, with negative anomalies re-20

lated to a cooling over tropical Atlantic and an opposite sign pattern over tropical Pa-
cific is only observed for the period from 1979 in advance. These results agree with
Losada et al. (2012), who focused on non-stationary influences of tropical global SST
in WAM variability, finding an Indian and Pacific correlated signal from 1970s in addition
to the isolated Atlantic influence prior to that period which is accompanied by the rain-25

fall dipole over West Africa. Recently, Diatta and Fink (2014) have documented similar
non-stationary relationships.

By comparing the hindcasts and observations in each grid point and time, validation
is computed. To do this, the Pearson correlation coefficient has been used, so that the
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associated skill of the model to reproduce the rainfall is shown in Fig. 7 in terms of cor-
relation maps over the study region under each of the considered periods (SC, NSC,
EP). As a first result, a qualitative improvement is observed when considering the SC
periods instead of the whole period (EP). This result points to a better spatial distri-
bution of the significant values for particular decades in which the signal extends to5

a larger spatial domain, mainly in the southwestern region. In order to analyze the per-
formance of the simulation for each particular year, the correlation between observed
and predicted maps at each time step is calculated and shown in Fig. 7. Since it has
only been considered the leading mode of co-variability, the time series of validation
between observed and simulated rainfall should evolve following the absolute values10

of the expansion coefficients. Thus, when the expansion coefficient (U) of the predictor
(SST) shows high scores in the leading mode, good hindcasts are generally obtained.

The rest of cases (NSC periods) show bad skill in terms of negative correlation
(Fig. 8), indicating how the leading mode of co-variability when considering the whole
time series is not useful for predicting rainfall in particular decades as those in NSC.15

To complement the results obtained by the model, the data matrix for the predictor
(Y ) and the predictand (Z) fields have been used in the Climate Predictability Tool
(CPT) developed at IRI. Thus, CCA method has been used, providing the results for
the leading mode of co-variability (Fig. 11) considering the whole study period (EP-
SL0).20

The leading mode by using CPT relates positive values of the SST over tropical
Atlantic with a rainfall decrease over the study region and vice versa, supporting the
results found in this study with the S4CAST model. Nevertheless, the obtained results
related to the skill of the CPT to reproduce rainfall variability (Fig. 10), show negative
values by using Pearson correlation coefficients, but lower than those obtained with the25

S4CAST model. The results of CPT are not so good as those using S4CAST. Thus, the
inclusion of a stationarity analysis to discriminate periods with changes in predictability
is crucial to improve the forecast skill.
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5 Discussion and conclusions

This paper introduces the S4CAST v2.0 model, developed at the Department of Geo-
physics and Meteorology, in the Faculty of Physics of the Universidad Complutense de
Madrid (UCM). The model was created from the first version (S4CAST v1.0), developed
as part of a cooperation project with the Laboratoire de Physique de l’Atmosphère et5

de l’Océan Siméon Fongang (LPAOSF) of the Université Cheikh Anta Diop (UCAD) of
Dakar in Senegal.

The model is focused on the study of the predictability of climate-related variables
based on the predictive nature of the SST. Such variables can be either SST (Rasmus-
son and Carpenter, 1982; Latif and Barnett, 1995; Harrison and Larkin, 1998; Klein10

et al., 1999; Trenberth et al., 2002) and rainfall (Janicot et al., 2001; Rowell, 2001,
2003; Giannini et al., 2003; Chung and Ramathan, 2006; Polo et al., 2008; Joly and
Voldoire, 2009; Lu, 2009; Gaetani et al., 2010; Fontaine et al., 2011; Nnamchi and Li,
2011); but also other variables. There are studies that have focused on the role of the
tropical Pacific on vegetation, crop yields and the economic consequences resulting15

from these impacts (Hansen et al., 1998, 2001; Adams et al., 1999; Legler et al., 1999;
Li and Kafatos, 2000; Naylor et al., 2001; Tao et al., 2004; Deng et al., 2010; Phillips
et al., 1998; Verdin et al., 1999; Podestá et al., 1999; Travasso et al., 2009). Regarding
human health, tropical SST patterns have been widely linked to the development and
propagation of diseases (Linthicum et al., 2010), where ENSO-related variability plays20

a crucial role mainly affecting tropical and subtropical regions around the world (Ko-
vats, 2000; Patz, 2002; Kovats et al., 2003; Patz et al., 2005; McMichael et al., 2006).
Whatever the predictand, previous analysis of the SST influence is necessary in order
to establish an association between such variables and the SST variability considered
as the predictor field.25

Concerning the association between two variables along time, the concept of sta-
tionarity is raised as one of the motivating factors in creating the S4CAST model. The
stationarity refers to changes in the co-variability patterns between the predictor and
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the predictand fields along a given sequence of decades, so that it can be kept invariant
(stationary) or changing (non-stationary). This concept has been addressed by differ-
ent authors (Janicot et al., 1996; Fontaine et al., 1998; Rodríguez-Fonseca et al., 2009,
2011; Mohino et al., 2011; Martín-Rey et al., 2012; Losada et al., 2012) and becomes
the main novelty and contribution introduced by S4CAST as a key factor to consider in5

seasonal forecasting provided by current prediction models, either dynamical or statis-
tical. Thus, S4CAST model is an alternative to enhance and complement the estimates
made by dynamical models, which have a number of systematic errors to adequately
reproduce the tropical climate variability (Biasutti et al., 2006; Richter and Xie, 2008;
Wahl et al., 2011; Doi et al., 2012; Richter et al., 2012; Bellenguer et al., 2013; Brown10

et al., 2013; Li and Xie, 2013; Toniazzo and Woolnough, 2013; Vanniere et al., 2013;
Xue et al., 2013). For the time being, the S4CAST model cannot be applied for strict
operational forecasts, although its application in determining stationary relationships
between two fields and their co-variability patterns can be crucial for improving the
estimates provided by the operating prediction models currently used.15

In the application shown in this paper we have focused in the results from MCA.
This statistical methodology, along with Canonical Correlation Analysis (CCA), have
been widely used in studies of predictability during the last decades (Barnston and
Ropelewski, 1992; Bretherton et al., 1992; Wallace et al., 1992; Barnston and Smith,
1996; Fontaine et al., 1999; Korecha and Barnston, 2007; Barnston and Tippet, 2014;20

Recalde-Coronel et al., 2014). Integration of the methodology and intuitive use through
a user interface are some of the main advantages of the S4CAST model, allowing the
selection of a big number of inputs. Future releases of the model will include other
methodologies that are currently being introduced and tested.

When conducting a pooling of the performance from models, a conclusion can be25

posed. On the one hand, dynamical models produce an underestimation of seasonal
climate forecasts, partly because the difficulty of reproducing the influence of SST on
atmospheric dynamics, and on the other hand, the chaotic behavior of the atmosphere
is markedly exaggerated in these models. In contrast, statistical models, despite be-
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ing an useful and effective supplement, mostly they are unable to reproduce the non-
linearity in the ocean–atmosphere system, exceptions include neural networks and
Bayesian methods. Attempts to implement new statistical models constitute a funda-
mental contribution aimed to enhance and complement the dynamical models. Anyway,
statistical models have evolved linked to dynamical models, either as an alternative or5

within them as a hybrid model.
The application of moving correlation windows between expansion coefficients ob-

tained from MCA analysis results in three periods of stationarity: entire period (EP),
significant correlation period (SC) and no-significant correlation period (NSC). For the
case in which non-stationarity is considered we refer to EP period, assuming changes10

in co-variability patterns. Stationarity is referred to SC and NSC periods. These peri-
ods may slightly vary depending on the type of moving correlation windows: advanced,
centered or delayed. Stationary analysis to determine the three different work peri-
ods (SC, NSC, EP) is limited to the selection of a single mode of co-variability using
MCA analysis. When selecting a set of modes, stationarity analysis is not applied so15

that simulations are only developed for EP period, whereby the whole time series is
considered for both the predictor and predictand fields. Future releases of S4CAST
will include new techniques in order to assess stationarity periods, being hierarchical
Bayesian methods one of the next steps to improve the model.

Three conditions may enhance the degree of confidence in a given predictor. The first20

has to do with the selection of moving correlation windows (see Sect. 3.1.2) used to
determine the working scenarios (SC, NSC, EP). Delayed moving correlation windows
can help in this task. Thus, if correlation coefficients between the expansion coefficients
(U and V ) exhibit significant values for the present year and the previous 21 study years,
greater confidence is assumed for the predictor. The second condition is determined25

by the value of the expansion coefficient (U) for the current year so that the higher
its value, the better the forecast. The last condition has to do with the percentage of
variance explained by the selected co-variability mode, the higher its value, the better
the forecast. Nevertheless, despite previous conditions, the influence of other remote
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and nearby oceanic predictors must be considered in order to provide a full and reliable
predictability study.

So far, the data files used as predictor and predictand fields correspond to observa-
tions and reanalysis from several institutions. The use of new data files is simple and
can be performed according to user needs. The upgrade of data files from respective5

websites must be checked periodically to strengthen the results. In addition, it is also
advisable to launch the same simulations using different data files in order to compare
the results and assess the robustness of the forecast. The results shown in this work
for different selections (SC-SL0, SC-SL1, NSC-SL0, NSC-SL1, EP-SL0, EP-SL1) have
been verified by following these criteria.10

Originally, the model was created to tackle the study of the predictability of anoma-
lous rainfall associated with WAM, which co-varies in a different way with the tropi-
cal band of Atlantic and Pacific ocean basins, being an indicator of non-stationarity
(Losada et al., 2012). The case study developed in this work corresponds to the pre-
dictability of Sahelian rainfall in the prominent season (JAS) from SSTA in the tropical15

Atlantic, serving as a benchmark for the model. The transition between SC and NSC
periods, around the 1970s, has served as the starting point of many studies focus-
ing on the influence of global SSTA before and after that period (Mohino et al., 2011;
Rodríguez-Fonseca et al., 2011, 2015; Losada et al., 2012) while being one of the
motivations to create S4CAST.20

The results obtained by using the CPT tool, demonstrate the ability of S4CAST to
improve the predictability of climate variability associated with the WAM and put for-
ward the consideration of non-stationarity in the co-variability patterns and therefore in
climatic teleconnections. Thus, it is important to determine the multidecadal modulator
of the interannual variability in order to know which predictor is the one affecting in25

particular periods and regions (Rodríguez-Fonseca et al., 2015).
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Code availability

The model consists of a software package organized in folders containing libraries,
functions and scripts developed as a MATLABr toolbox from version R2010b on-
wards. Two of the folders, named as mexcdf and netcdf_toolbox, corresponds to
libraries needed for working with NetCDF files and have been downloaded from5

www.mexcdf.sourceforge.net and built-in into the model. The file containing the model
core with the executable code is named S4core. Once the toolbox has been added to
the MATLABr path and by simply typing “S4cast” in the command window, the user
is prompted to enter a number of input parameters required to launch a simulation.
Additionally, the software package S4plot dedicated to plot figures has been added10

so that the user can use this software by typing “figures” in the command window
once the simulation has ended and the output data are loaded. The code is Open Ac-
cess and can be downloaded from the Zenodo repository (DOI 10.5281/zenodo.15985)
in the URL https://zenodo.org/record/15985. Along with the code, there is a text
file containing inputs leading to the results presented in this paper for SL0 (sahe-15

lian_rainfall_inputs_SL0.txt) and SL1 (sahelian_rainfall_inputs_SL1.txt) case studies.
Note that figures presented in this work have been further improved manually. To fa-
cilitate implementation of the model leading to the results shown in this paper, used
data files that have been previously defined in Sect. 4, are included in the directo-
ries /S4CAST_v2.0/data_files/predictand and /S4CAST_v2.0/data_files/predictor. The20

code has been thoroughly analyzed by using several data files and input parameters.
However, the emergence of software bugs is not ruled out, being mostly associated
with problems to adapt and use NetCDF files. To solve these hypothetical code bugs,
please do not hesitate to contact authors.
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Table 1. Case studies (EP-SL0, EP-SL1, SC-SL0, SC-SL1, NSC-SL0, NSC-SL1) correspond-
ing to the model simulations developed in this work depending on predictand and predictor
selections.

Periods of stationarity

Non-stationary Stationary

EP1 SC2 NSC2

Predictor Lead-time 0 AMJ SL03 EP-SL0 SC-SL0 NSC-SL0

selections Synchronous+ MJJ+ JJA+ JAS SL14 EP-SL1 SC-SL1 NSC-SL1
partial overlap

1 Non-stationary period referred to the selection of the Entire Period (EP) for statistical analysis.
2 Stationary periods determined by significant correlation using 21 years moving correlation windows. Obtained periods are
the Significant Correlation period (SC) and No-Significant Correlation period (NSC).
3 Selection 0 (SL0): Seasonal period for the predictor at lead-time = 0 (April–May–June; AMJ).
4 Selection 1 (SL1): Seasonal periods for the predictor at synchronous season and partial monthly overlaps
(May–June–July MJJ, June–July–August JJA and July–August–September JAS).
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Figure 1. Schematic diagram illustrating the structure of the model.
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Figure 2. Predictand (Z) and predictor (Y ) fields represented by their corresponding data ma-
trices. The illustration relates to an example in which the forecast period covers the months
July–August–September (JAS) and the predictor is selected for four distinct seasons: January–
February–March (JFM, lead-time= 3); February–March–April (FMA, lead-time= 2); March–
April–May (MAM, lead-time= 1); April-May-June (AMJ, lead-time= 0). Each of these sub-
matrices for the predictor has the same temporal dimension (nt) and spatial dimension (ns2).
The predictand may have a different spatial dimension (ns1) but the same temporal dimension
(nt) to enable matrix calculations required by MCA methodology.
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Figure 3. 21 years moving correlation windows (green line) between the expansion coefficients
U corresponding to predictor field (SSTA, blue bars) and V corresponding to predictand field
(anomalous rainfall, red line) obtained from the leading mode of co-variability from MCA anal-
ysis between both anomalous fields. Top panel correspond to the analysis considering SL0
for predictor; bottom panel refers to SL1 (see Table 1). Shaded triangles indicate significant
correlation under a Montecarlo Test at 90 %.
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Figure 4. Regression maps obtained from the leading MCA (SC period) done between SSTA
in the Atlantic and western Sahel rainfall. Left column represents the homogeneous regression
map done projecting the expansion coefficient U onto global SSTA (◦C std−1). Right column
represents the heterogeneous regression map done projecting expansion coefficient U onto
the anomalous Sahelian rainfall (mm day−1 std−1). Cases SC-SL0 (top panels) and SC-SL1
(bottom panels) are presented (see Table 1). Rectangles show the selected regions for predictor
and predictand variables considered in the MCA analysis. Values are plotted in regions where
statistical significance under a Montecarlo test is higher than 90 %.
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Figure 5. Regression maps obtained from the leading MCA (EP period) done between SSTA
in the Atlantic and western Sahel rainfall. Left column represents the homogeneous regression
map done projecting the expansion coefficient U onto global SSTA (◦C std−1). Right column
represents the heterogeneous regression map done projecting expansion coefficient U onto
the anomalous Sahelian rainfall (mm day−1 std−1). Cases EP-SL0 (top panels) and EP-SL1
(bottom panels) are presented (see Table 1). Rectangles show the selected regions for predictor
and predictand variables considered in the MCA analysis. Values are plotted in regions where
statistical significance under a Montecarlo test is higher than 90 %.

4013

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/3971/2015/gmdd-8-3971-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/3971/2015/gmdd-8-3971-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 3971–4018, 2015

S4CAST seasonal
forecast model

R. Suárez-Moreno and
B. Rodríguez-Fonseca

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 6. Regression maps obtained from the leading MCA (NSC period) done between SSTA
in the Atlantic and western Sahel rainfall. Left column represents the homogeneous regression
map done projecting the expansion coefficient Uonto global SSTA (◦C std−1). Right column
represents the heterogeneous regression map done projecting expansion coefficient U onto
the anomalous Sahelian rainfall (mm day−1 std−1). Cases NSC-SL0 (top panels) and NSC-SL1
(bottom panels) are presented (see Table 1). Rectangles show the selected regions for predictor
and predictand variables considered in the MCA analysis. Values are plotted in regions where
statistical significance under a Montecarlo test is higher than 90 %.
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Figure 7. Skill-score validation in terms of Pearson correlation coefficients between observed
and simulated maps (hindcast). Left column corresponds to the spatial validation for each point
in space. The right column corresponds to validation time series (green line) between hind-
casts and observations considering only the regions indicated by significant spatial correlation.
Significant correlation values for time series are indicated by shaded triangles. Blue bars cor-
respond to the expansion coefficient (U) of the SSTA (predictor). The rows correspond to the
SC and EP case studies disaggregated in Table 1. Significant values are plotted from 90 % of
statistical significance under a Montecarlo test.
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Figure 8. Spatial validation in terms of Pearson correlation coefficients between observed and
simulated maps (hindcast) for each point in space. Each row corresponds to a case study within
NSC period disaggregated in Table 1. Significant values are plotted from 90 % of statistical
significance under a Montecarlo test.
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Figure 9. Leading mode from CCA analysis using the Climate Predictability Tool (CPT) between
the predictor field (Y ) corresponding to SSTA in the tropical Atlantic (20◦ S–4◦ N/60◦W–20◦ E)
and the predictand (Z) in the western Sahel (12.5–17.5◦ N/17.5–9.5◦W). (a) Time series of
the predictor expansion coefficient and (b) the predictand expansion coefficient. (c) Correlation
maps corresponding to the predictor and (d) the predictand.
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Figure 10. Validation map from CPT by using Pearson correlation coefficients between each
spatial point of the hindcasts and observed maps for the entire study period (1902–2013).
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